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An approach to taking into account a p r i o r i  information about the smoothness of 
the function being restored is elucidated, as are also values of the function 
and its derivatives at a number of points of the domain of definition. 

The confidence in and accuracy of the solution of incorrectly posed problems can depend 
to a significant extent on how completely available information about the quantities desired 
is taken into account. This information is separated into qualitative and quantitative. In 
the former case the presence of information about the smoothness of the functions being re- 
produced is understood, and certain quantitative characteristics of these functions to the 
latter. Such information can be given by starting from the physical singularities of the pro- 
cesses under investigation and the features of conduct,ing the experiment as well as from con- 
ditions of uniqueness in solving the problem. 

The iteration form of regularization [7-14] provides sufficiently broad possibilities 
for taking account of the qwalitative and quantitative a priori information about the solu- 
tion of the incorrect problem. One such approach, according to which the direction of de- 
scent in the construction of the iteration sequence corresponding to the gradient method is 
selected in the initial space of solutions U = L= (integrable square functions) so as not to 
deduce approximations from the class W2 k (functions having k generalized derivatives), is con- 
sidered in [7, 15, 16]. Another approach proposed in [17], when the iteration sequence is 
obtained directly in the U = W2 k, is developed in the present paper. 

i. TAKING ACCOUNT OF QUALITATIVE INFORMATION ABOUT THE SMOOTHNESS 

OF THE DESIRED SOLUTION 

Let us consider an operator equation of the first kind 

A u = f ,  ( 1 )  

where A:W~[a, b]-+t2[a, hi; u=ufx), xGRI, is the desired function, and f = f(x) is given. 

We will consider the solution of the problem (i) to exist and be unique, but correct 
solvability of this equation is spoiled, the inverse operator A-* is not continuous. 

Let the right side of (i) be given with the error ~=[+[, II~IIF~6. 

We construct an algorithm of the solution of (i) on the basis of a certain approximation 
process 

U i+l = F A (u i, 6), ] = O, 1 . . . . .  1", 

in which the number j of the iteration is considered as the regularization parameter. In par- 
ticular, such an iteration can correspond to steepest descent and conjugate gradient methods. 
It is established in [12, 13] for the linear case that these methods generate a family of 
regularizing parameters with parameter J. If the iteration process is set up according to 
the residual criterion ( ] * : A u t * - ~ f s H p ~ ' 6 ) , ,  then the methods mentioned are regularizing algo- 
rithms (more accurate formulations are presented in the above-mentloned papers). 

The applicability of such an approach to the solution of a number of incorrect problems 
in a nonlinear formulation was shown by the method of numerical modelling [7, 9, 18-21]. Con- 
sequently, in the general case we examine (I) with the nonlinear operator A which we will con- 
sider Frechet differentlable. 

Sergo Ordzhonlkidze Moscow Aviation Institute. Translated from Inzhenerno-Fizlcheskii 
Zhurnal, Vol. 49, No. 6, pp. 925-932, December, 1985. Original article submitted May 17, 
1985. 

1412 0022-0841/85/4906-1412509.50 �9 1986Plenum Publishing Corporation 



We later examine the algorithm to solve the problem (I) by the appropriate method of 
steepest descent (we easily realize the transition to the conjugate gradient method). In 
this case we have the iteration sequence 

d + ~ -  J - ~Jss i = 0, 1 . . . . .  /*; ( ? )  
2 

ggi~ =2  (Ai/)* (Au i -  fs), 

where JWI~2 i s  the g rad ien t  in  u fo r  the f u n c t i o n a l - r e s i d u a l  J ( u ) -  [[Au--/c~[[~, in  the space W k 
2 '  

A u' is the Frechet derivative of the operator A, and Bj is the step in the descent to the j- 
th iteration (~j:minJ(u i- ~J$~)). 

The initial approximation u ~ in (2) must be selected from the class of functions of ap- 
propriate smoothness u~ b], p>~k, in particular, we can set u~ = O. 

When using (2) and sele_cting the number of the last iteration J* by means of the residu- 
al criterion, we have ui*-+u as 6-+0 , where uEW~ is the exact solution of the problem 
(1). ~v~ 

Therefore, for the practical application of this algorithm, a method must be found to 
determine the gradient of the functional J(u) in the space W= k. We shall consider that there 
is an algorithm to find the gradient in the space L= [a, b] at our disposal, which will be de- 
noted by JL'a" In particular, such algorithms can be constructed by using an adjoint boundary 
value problem [7, 17, 18-23] when solving a broad circle of inverse problems and optimal con- 
trol problems for systems with lumped and distributed parameters. 

It is shown in [17] that the following boundary value problem 

( n ~ d~ r~ - -  = J i , ( x ) ,  x E ( a , b ) ;  (3) 
" -  -" T T  d x  ~ 

,-n i g" 

dx g ' . = l  (4) 

must be solved to determine the gradient J'~'~ak by means of a given gradient J'L=. Here r n = 
rn(X) are given nonnegative continuous functions that play the part of weights, where ro, 
r k > O. The influence of each Of the derivatives on the desired function u(x) at different 
points of the segment [a, b] is taken into account with their aid. It is ordinarily assumed 
that r n are numerical factors, for instance r~ = r= = ... = r k = I. 

In the case u 6 W~, which turns out to be perfectlv suitable for many practical apvlica- 
tions, the boundary value problem (3), (4) takes on its simplest form 

d 1 clx ) = J i ;  xE(a, b); (5) 

d x  ~ a  = d x  ,=  = 0 .  (6)  
\ 

Assuming that ro and rl are numbers, the solution of the problem (5), (6) can be obtained in 
terms of  the Green 's  func t ion  

x 

J ; i  (x)= Blexp[pxl + B~exp [--PXl----!--I ~ Ji~(~)sh[p(xi-~)ld~' xE[a'bl" (7) 
t o r1  

a 
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where 

p = ro ; B1 = B2 exp [--2pa]; 

b 

B 2  ~ a 
p q  (exp [pb - -2pa]- -exp [pb--2pb]) " 

Let us note that it is expedient to take account of the/possibility of analytic integra- 
tion of the function sinh z in evaluating the integral in (7). In particular, a sufficiently 

x 

effective procedure for computing S'"d~ is obtained when using the simplest step avproxima- 

mation of the function 

X n 2 J'J2~(g)sh[p(x--~)] d~_ ~_~J~ x~ j" sh [p (x~ - -  ~)1 d~ = - -p  J;  (ch [p (x~ - -  &)] - -  ch [p (x~ - -  x~_l)]), 
a ~=1 xt_ I i = 1  

where 

( ) &=J'L.. xi x~--x~_l  . 
2 

The integral in the expression for the constant B~ can be calculated by an analogous 
method. 

2. TAKING ACCOUNT OF QUANTITATIVE INFORMATION ABOUT THE SOLUTION 

We first examine the situation when values of the function and (or) its derivatives are 
known at the boundary points of the segment [a, b]. These data can be taken into account suf- 
�9 ficiently simply by the selection of the initial approximation to the solution and by giving 
appropriate boundary conditions for (3). For instance, let the values of the derivatives 
u'(a) = ax and u'(b) = 8x be known. We take this information into account in selecting the 

initial approximation, namely, we require satisfaction of the equalities 
duo (a) &o (b) 

~--- ~I' 
dx d~ 

= 81. Now, if the solution (7) of the problem (5), (6) is used, then the conditions men- 
tioned will be satisfied exactly by virtue of the equalities (6). When the values of the 
functions u(a) = ~o, u(b) = 8o are known, then can be taken into account when using the space 

W~ by replacing the boundary conditions (6) by others: J$~(a)=Y~(b)=O The initial ap- 

proximation is given here by conserving the equalities u~ = ~o, u ~ (b) = 8o. Taking simul- 
taneous account of the values of the functions and the first derivative at the edges of the 
segment is possible in solving the problem (I) in the space W~. In this case it is necessary 

d I~ (0 
to give ----0, l----a,b, m----I, 2, in place of the conditions (4) and to select u ~ in 

dx n 

an appropriate manner. Within the framework of the conditions (4), taking account of the 
values of the second derivative on the segment boundaries is possible for k = 2. Other cases 
giving the a priori information about the desired solution at the points a and b can also be 
considered analogously. 

The method being considered for the construction of a smooth solution permits taking ac- 
count also of certain a priori information about the function and its derivatives at a number 
of points of t.he segment [a, b]. We turn to a clarification of these questions. Functions 
of the class Wk2[a, b] can be represented in the following integral form in terms of the gen- 
eralized derivative u (k) (x) [16] : 
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k--1 x ~, ~h-i 

n~O Xl X~ X/~ 

where  C n = u (n) (Xn+t) ; n = O, k - 1  a r e  v a l u e s  o f  t h e  d e r i v a t i v e s  o f  t h e  f u n c t i o n  u ( x )  t o  o r d e r  
k -- 1 a t  c e r t a i n  f i x e a  p o i n t s  Xn+l;E [ a ,  b]  ; Pn(X) i s  a p o l y n o m i a l  o f  n - t h  d e g r e e .  

The i d e n t i t y  (8)  i s  o b t a i n e d  as  f o l l o w s .  I f  t h e  f u n c t i o n  u ( x )  6 L2 [ a ,  b ] : h a s  a g e n :  
e r a l i z e d  k - t h  d e r i v a t i v e  u(a)(x) L2[d, b] t h e n  i t  i s  c o n t i n u o u s l y  d i f f e r e n t i a b l e  k -  1 t i m e s  i n  
t h e  s e g m e n t  [ a ,  b] and t h e  d e r i v a t i v e  u ( k - t ) ( x )  i s  a b s o l u t e l y  c o n t i n u o u s  i n  [ a ,  b ] .  I n  t h i s  
c a s e ,  t h e  r e l a t i o n s h i p  

u(~-')(~,,-J = S u(~:(~.) d~,. +u('~-'~(x'O' n =  l , k .  
X~ 

holds for all derivatives to order k -- I. 

Expressing u(x) in terms of u'(r then u'(r in terms of u"(r etc., we arrive at 
the identity (8). The form of the polynomials Pn(X) is obtained easily for each specific 
problem. 

Let us use the notation 
X 1 X2 X~, 

and let us substitute u(x) in the 

form (8) into the iteration sequence (2). We consequently have 

(9) 

Furthermore, we assume that values of the function and its derivatives are known at the 
points {Xn} , i.e., the numbers Cn, n = 0, k--i are given. In this case (9) takes the form 

j'i /+~  (.'0 = yi (x) - -  ~ ~ ,  

where the initial approximation y~ should correspond to the conditions u ~ (Xn+:) -- Cn, 

h--I 

n = 0, k-l, in particular, it can be assumed that u~ %CnPn(x ) , then v~ = 0. 
n=0 

By this method k conditions in the form of an equality for the function u(xt) itself and 
its derivatives u (n) (Xn+1), n = 0, k-i can be satisfied exactly, each of these quantities is 
satisfied at one of the points of the segment [a, b] (these points can also certainly coin- 
cide). Hence, it becomes clear how to select the values of Xn, n = 0, k-l. 

The method described permits taking account of one value of the function and by means of 
one value of each derivative at certain points of the segment [a, b], including at its bound- 
ary. If a large number of values of both the function and its derivatives should be satis- 
fied, we can then proceed as follows. The interval [a, b] is partitioned into subdomains 
whose boundaries agree with the points x n where conditions are given and s + 1 boundary value 
problems of the form (3)-(4) are solved in appropriate domains ([a, xl]; [Xn, Xn+:] , n = I, 

i' s- ; [Xs, b]). Let us note that the gradients JL= are determined by individual sections of 
the segment [a, b]. It is natural that the initial approximation u~ x ~@ [a, b] should be 

(i) " " selected in agreement with the given quantities u (x n). 

3. PARAMETRIZED MODE OF THE SOLUTION 

In solving a number of inverse problems and optimal control problems, it turns out to be 
convenient to represent the desired function in the following approximate form: 

M 

u(x)~--u(x) = X an~(x), x6[a, b], (10) 
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Fig. i. Results of recovery of 
the heat flux density as a func- 
tion of the time i) desired so- 
lution; 2) compared data. 

where {%(x)}~u is a given system of basis functions, and a = {an} ~ is the numerical vector of 
the coefficients to be determined. 

Cubic B-splines are often taken as ~n(x). The corresponding functions (I0) form a sub- 
space in the space W~[a. b], k~.~3. 

To determine a ~ R M we use an iteration formula of gradient type with a halt in the 
residual 

ai+l  - - a  1 _  [~jpi, ] - -  O, 1 . . . . .  ]*, 

]* : J (a i*) - -  [[ Au (x) hll~-~ " 8-0. 
(11) 

Let us pose the problem: Find the descent direction PJ={P~} ~=M n=1 in each iteration in 
such a manner as to assure convergence of the approximation u 3 (x) in the norm of the space 
W2 k. For simplicity, we limit ourselves, as before, to the method of steepest descent in this 
analysis. 

Let the desired function u(x) ~ w2k [a, b] receive a small increment e(x)Q wk[~, hi. 
Then the linear part of the appropriate increment in the functional $ can be represented in 
the form of a scalar product in the space w=k[a, b]: 

AJ = (o, j 
n=o a dXn dxn 

( 1 2 )  

Since ~(x) has the form (i0), we obtain for the increment B(x) 

24 

0 (x) : ~ Aa,% (x). 
"q--~ 1 

(13) 

Taking into account that the vector p in the interation sequence (Ii) corresponds to the 
method of steepest descent, we write an analogous representation for the gradient of the func- 
tional in the space W2 k 

M 

J$~ :: ~_fn% (x). (14) 

After substituting (13) and (14) into (12) and some manipulations, we arrive at the fol- 
lowing expression 

AJ = (Aa, v)RM, ( 1 5 )  
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whe re 

M 

i = l  

and (,)R M is the scalar product in the space R M. 

It follows from (15) that the vector v is a gradient of the functional J in the space 
R M, from which we obtain a system of linear algebraic equations to calculate the components 
pq, if the components v n are known: 

M 

' ~ p i b ~ i  = v~, ~1 = 1, M ,  (16) 
4=1 

where  b~, -- (~n, ~*)g~" 

The matrix of this system is symmetric, and positive-definlte, and methods that take ac- 
count of these features and are well known in linear algebra can be used to solve (16). 

The right side of the system (16) is the gradient of a functional in a, it can be found 
in terms of the solution of the adjoint boundary value problem, as is done in particular, in 
[19, 20] .  

The elucidated approach to take account of qualitative and quantative information permits 
the construction of effective computational algorithms and yields good results in solving dif- 
ferent practical problems. A graph of the solution of the inverse boundary-value heat-conduc- 
tion problem with constant coefficients is shown in the figure for an example. That the de- 
sired function u(T) belongs to the space W~[0, Tm] was given as information about the smooth- 
ness and values of the derivatives u'(0) = u'(T m) = 0 were known on the boundaries of a time 
interval. The quantity U~ was taken as initial approximation. The gradient of the func- 
tional-residual was computed by means of (7) by using the step approximation u(T). The ini- 
tial data were taken unperturbed. As is seen from the graph, restoration of the curve is 
close to the exact value. 
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WAYS OF ALLOWING FOR A PRIORI INFORMATION IN REGULARIZING 

GRADIENT ALGORITHMS 

S. V. Rumyantsev UDC 536.24:517.688 

Ways of allowing for a pr~or~ information on an unknown quantity in the solution 
of boundary-value and coefficient inverse problems of heat conduction by gradient 
methods are considered. 

In the solution of inverse problems of heat conduction (IPHC), llke any other ill-posed 
problem the qualitatively obtained approximations essentially depend on the proper and com- 
plete allowance for all the available a prior~ information about the solution being sought 
[i, 2]. And the widespread case in IPHC is the presence of information about the smoothness 
of the solution. 

Let an IPHC be formulated as an operator equation of the first kind, 

Au= f, uEU, [EF, (1) 

where we s h a l l  t a k e  t h e  o p e r a t o r  A as F r e c h e t  d i f f e r e n t i a b l e .  The c h o i c e  o f  t h e  s p a c e s  U and 
F i s  d i c t a t e d  by t h e  s t a t e m e n t  o f  t h e  p rob l em i t s e l f :  They must  c o n t a i n  s u f f i c i e n t l y  b r o a d  
classes of functions, which will include all physically possible solutions u and any initial 
data f with allowance for the distortions introduced by the measurement systems. Therefore, 
the space L2 of functions with an integrable square is taken most often as the spaces U and 
F. This is a Hilbert space, enabling one to apply gradient methods for the solution of Eq. 
(1 ) .  

For concrete problems, however, there is often additional, qualitative, a pr~or~ infor- 
mation about the solution being sought, which is usually given in one of two forms: 

i) u i@ L[V], a transform of a certain continuous linear operator L:V + U; 

Sergo Ordzhonikidze Aviation Institute, Moscow. 
Zhurnal, Vol. 49, No. 6, pp. 932-936, December, 1985. 
1985. 

Translated from Inzhenerno-Fizicheskii 
Original article submitted May 17, 

1418 0022-0841/85/4906-1418509.50 �9 1986 Plenum Publishing Corporation 


